Source code for dask_expr.io.sql

[docs]def read_sql(sql, con, index_col, **kwargs): """ Read SQL query or database table into a DataFrame. This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query``. It will delegate to the specific function depending on the provided input. A SQL query will be routed to ``read_sql_query``, while a database table name will be routed to ``read_sql_table``. Note that the delegated function might have more specific notes about their functionality not listed here. Parameters ---------- sql : str or SQLAlchemy Selectable Name of SQL table in database or SQL query to be executed. TextClause is not supported con : str Full sqlalchemy URI for the database connection index_col : str Column which becomes the index, and defines the partitioning. Should be a indexed column in the SQL server, and any orderable type. If the type is number or time, then partition boundaries can be inferred from ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit ``divisions``. Returns ------- dask.dataframe See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql_query : Read SQL query into a DataFrame. """ from dask.dataframe.io.sql import read_sql return read_sql(sql, con, index_col, **kwargs)
[docs]def read_sql_table( table_name, con, index_col, divisions=None, npartitions=None, limits=None, columns=None, bytes_per_chunk="256 MiB", head_rows=5, schema=None, meta=None, engine_kwargs=None, **kwargs, ): """ Read SQL database table into a DataFrame. If neither ``divisions`` or ``npartitions`` is given, the memory footprint of the first few rows will be determined, and partitions of size ~256MB will be used. Parameters ---------- table_name : str Name of SQL table in database. con : str Full sqlalchemy URI for the database connection index_col : str Column which becomes the index, and defines the partitioning. Should be a indexed column in the SQL server, and any orderable type. If the type is number or time, then partition boundaries can be inferred from ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit ``divisions``. columns : sequence of str or SqlAlchemy column or None Which columns to select; if None, gets all. Note can be a mix of str and SqlAlchemy columns schema : str or None Pass this to sqlalchemy to select which DB schema to use within the URI connection divisions: sequence Values of the index column to split the table by. If given, this will override ``npartitions`` and ``bytes_per_chunk``. The divisions are the value boundaries of the index column used to define the partitions. For example, ``divisions=list('acegikmoqsuwz')`` could be used to partition a string column lexographically into 12 partitions, with the implicit assumption that each partition contains similar numbers of records. npartitions : int Number of partitions, if ``divisions`` is not given. Will split the values of the index column linearly between ``limits``, if given, or the column max/min. The index column must be numeric or time for this to work limits: 2-tuple or None Manually give upper and lower range of values for use with ``npartitions``; if None, first fetches max/min from the DB. Upper limit, if given, is inclusive. bytes_per_chunk : str or int If both ``divisions`` and ``npartitions`` is None, this is the target size of each partition, in bytes head_rows : int How many rows to load for inferring the data-types, and memory per row meta : empty DataFrame or None If provided, do not attempt to infer dtypes, but use these, coercing all chunks on load engine_kwargs : dict or None Specific db engine parameters for sqlalchemy kwargs : dict Additional parameters to pass to `pd.read_sql()` Returns ------- dask.dataframe See Also -------- read_sql_query : Read SQL query into a DataFrame. Examples -------- >>> df = dd.read_sql_table('accounts', 'sqlite:///path/to/bank.db', ... npartitions=10, index_col='id') # doctest: +SKIP """ from dask.dataframe.io.sql import read_sql_table as _read_sql_table return _read_sql_table( table_name, con, index_col, divisions=divisions, npartitions=npartitions, limits=limits, columns=columns, bytes_per_chunk=bytes_per_chunk, head_rows=head_rows, schema=schema, meta=meta, engine_kwargs=engine_kwargs, **kwargs, )
[docs]def read_sql_query( sql, con, index_col, divisions=None, npartitions=None, limits=None, bytes_per_chunk="256 MiB", head_rows=5, meta=None, engine_kwargs=None, **kwargs, ): """ Read SQL query into a DataFrame. If neither ``divisions`` or ``npartitions`` is given, the memory footprint of the first few rows will be determined, and partitions of size ~256MB will be used. Parameters ---------- sql : SQLAlchemy Selectable SQL query to be executed. TextClause is not supported con : str Full sqlalchemy URI for the database connection index_col : str Column which becomes the index, and defines the partitioning. Should be a indexed column in the SQL server, and any orderable type. If the type is number or time, then partition boundaries can be inferred from ``npartitions`` or ``bytes_per_chunk``; otherwise must supply explicit ``divisions``. divisions: sequence Values of the index column to split the table by. If given, this will override ``npartitions`` and ``bytes_per_chunk``. The divisions are the value boundaries of the index column used to define the partitions. For example, ``divisions=list('acegikmoqsuwz')`` could be used to partition a string column lexographically into 12 partitions, with the implicit assumption that each partition contains similar numbers of records. npartitions : int Number of partitions, if ``divisions`` is not given. Will split the values of the index column linearly between ``limits``, if given, or the column max/min. The index column must be numeric or time for this to work limits: 2-tuple or None Manually give upper and lower range of values for use with ``npartitions``; if None, first fetches max/min from the DB. Upper limit, if given, is inclusive. bytes_per_chunk : str or int If both ``divisions`` and ``npartitions`` is None, this is the target size of each partition, in bytes head_rows : int How many rows to load for inferring the data-types, and memory per row meta : empty DataFrame or None If provided, do not attempt to infer dtypes, but use these, coercing all chunks on load engine_kwargs : dict or None Specific db engine parameters for sqlalchemy kwargs : dict Additional parameters to pass to `pd.read_sql()` Returns ------- dask.dataframe See Also -------- read_sql_table : Read SQL database table into a DataFrame. """ from dask.dataframe.io.sql import read_sql_query as _read_sql_query return _read_sql_query( sql, con, index_col, divisions=divisions, npartitions=npartitions, limits=limits, bytes_per_chunk=bytes_per_chunk, head_rows=head_rows, meta=meta, engine_kwargs=engine_kwargs, **kwargs, )
[docs]def to_sql( df, name: str, uri: str, schema=None, if_exists: str = "fail", index: bool = True, index_label=None, chunksize=None, dtype=None, method=None, compute=True, parallel=False, engine_kwargs=None, ): """Store Dask Dataframe to a SQL table An empty table is created based on the "meta" DataFrame (and conforming to the caller's "if_exists" preference), and then each block calls pd.DataFrame.to_sql (with `if_exists="append"`). Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : str Name of SQL table. uri : string Full sqlalchemy URI for the database connection schema : str, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : bool, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : str or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtype : dict or scalar, optional Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method : {None, 'multi', callable}, optional Controls the SQL insertion clause used: * None : Uses standard SQL ``INSERT`` clause (one per row). * 'multi': Pass multiple values in a single ``INSERT`` clause. * callable with signature ``(pd_table, conn, keys, data_iter)``. Details and a sample callable implementation can be found in the section :ref:`insert method <io.sql.method>`. compute : bool, default True When true, call dask.compute and perform the load into SQL; otherwise, return a Dask object (or array of per-block objects when parallel=True) parallel : bool, default False When true, have each block append itself to the DB table concurrently. This can result in DB rows being in a different order than the source DataFrame's corresponding rows. When false, load each block into the SQL DB in sequence. engine_kwargs : dict or None Specific db engine parameters for sqlalchemy Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- read_sql : Read a DataFrame from a table. Notes ----- Timezone aware datetime columns will be written as ``Timestamp with timezone`` type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. .. versionadded:: 0.24.0 References ---------- .. [1] https://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create a table from scratch with 4 rows. >>> import pandas as pd >>> import dask.dataframe as dd >>> df = pd.DataFrame([ {'i':i, 's':str(i)*2 } for i in range(4) ]) >>> ddf = dd.from_pandas(df, npartitions=2) >>> ddf # doctest: +SKIP Dask DataFrame Structure: i s npartitions=2 0 int64 object 2 ... ... 3 ... ... Dask Name: from_pandas, 2 tasks >>> from dask.utils import tmpfile >>> from sqlalchemy import create_engine, text >>> with tmpfile() as f: ... db = 'sqlite:///%s' %f ... ddf.to_sql('test', db) ... engine = create_engine(db, echo=False) ... with engine.connect() as conn: ... result = conn.execute(text("SELECT * FROM test")).fetchall() >>> result [(0, 0, '00'), (1, 1, '11'), (2, 2, '22'), (3, 3, '33')] """ from dask.dataframe.io.sql import to_sql as _to_sql return _to_sql( df, name=name, uri=uri, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype, method=method, compute=compute, parallel=parallel, engine_kwargs=engine_kwargs, )