Assignment
Contents
Assignment¶
Dask Array supports most of the NumPy assignment indexing syntax. In particular, it supports combinations of the following:
Indexing by integers:
x[1] = y
Indexing by slices:
x[2::-1] = y
Indexing by a list of integers:
x[[0, -1, 1]] = y
Indexing by a 1-d
numpy
array of integers:x[np.arange(3)] = y
Indexing by a 1-d
Array
of integers:x[da.arange(3)] = y
,x[da.from_array([0, -1, 1])] = y
,x[da.where(np.array([1, 2, 3]) < 3)[0]] = y
Indexing by a list of booleans:
x[[False, True, True]] = y
Indexing by a 1-d
numpy
array of booleans:x[np.arange(3) > 0] = y
It also supports:
Indexing by one broadcastable
Array
of booleans:x[x > 0] = y
.
However, it does not currently support the following:
Indexing with lists in multiple axes:
x[[1, 2, 3], [3, 1, 2]] = y
Broadcasting¶
The normal NumPy broadcasting rules apply:
>>> x = da.zeros((2, 6))
>>> x[0] = 1
>>> x[..., 1] = 2.0
>>> x[:, 2] = [3, 4]
>>> x[:, 5:2:-2] = [[6, 5]]
>>> x.compute()
array([[1., 2., 3., 5., 1., 6.],
[0., 2., 4., 5., 0., 6.]])
>>> x[1] = -x[0]
>>> x.compute()
array([[ 1., 2., 3., 5., 1., 6.],
[-1., -2., -3., -5., -1., -6.]])
Masking¶
Elements may be masked by assigning to the NumPy masked value, or to an array with masked values:
>>> x = da.ones((2, 6))
>>> x[0, [1, -2]] = np.ma.masked
>>> x[1] = np.ma.array([0, 1, 2, 3, 4, 5], mask=[0, 1, 1, 0, 0, 0])
>>> print(x.compute())
[[1.0 -- 1.0 1.0 -- 1.0]
[0.0 -- -- 3.0 4.0 5.0]]
>>> x[:, 0] = x[:, 1]
>>> print(x.compute())
[[1.0 -- 1.0 1.0 -- 1.0]
[0.0 -- -- 3.0 4.0 5.0]]
>>> x[:, 0] = x[:, 1]
>>> print(x.compute())
[[-- -- 1.0 1.0 -- 1.0]
[-- -- -- 3.0 4.0 5.0]]
If, and only if, a single broadcastable Array
of
booleans is provided then masked array assignment does not yet work as
expected. In this case the data underlying the mask are assigned:
>>> x = da.arange(12).reshape(2, 6)
>>> x[x > 7] = np.ma.array(-99, mask=True)
>>> print(x.compute())
[[ 0 1 2 3 4 5]
[ 6 7 -99 -99 -99 -99]]
Note that masked assignments do work when a boolean
Array
index used in a tuple, or implicit tuple,
of indices:
>>> x = da.arange(12).reshape(2, 6)
>>> x[1, x[0] > 3] = np.ma.masked
>>> print(x.compute())
[[0 1 2 3 4 5]
[6 7 8 9 -- --]]
>>> x = da.arange(12).reshape(2, 6)
>>> print(x.compute())
[[ 0 1 2 3 4 5]
[ 6 7 8 9 10 11]]
>>> x[(x[:, 2] < 4,)] = np.ma.masked
>>> print(x.compute())
[[-- -- -- -- -- --]
[6 7 8 9 10 11]]