Command Line
Contents
Command Line¶
This is the most fundamental way to deploy Dask on multiple machines. In production environments this process is often automated by some other resource manager. Hence, it is rare that people need to follow these instructions explicitly. Instead, these instructions are useful to help understand what cluster managers and other automated tooling is doing under the hood and to help users deploy onto platforms that have no automated tools today.
A dask.distributed
network consists of one dask scheduler
process and
several dask worker
processes that connect to that scheduler. These are
normal Python processes that can be executed from the command line. We launch
the dask scheduler
executable in one process and the dask worker
executable in several processes, possibly on different machines.
To accomplish this, launch dask scheduler
on one node:
$ dask scheduler
Scheduler at: tcp://192.0.0.100:8786
Then, launch dask worker
on the rest of the nodes, providing the address to
the node that hosts dask scheduler
:
$ dask worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.1:12345
Registered to: tcp://192.0.0.100:8786
$ dask worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.2:40483
Registered to: tcp://192.0.0.100:8786
$ dask worker tcp://192.0.0.100:8786
Start worker at: tcp://192.0.0.3:27372
Registered to: tcp://192.0.0.100:8786
The workers connect to the scheduler, which then sets up a long-running network connection back to the worker. The workers will learn the location of other workers from the scheduler.
Handling Ports¶
The scheduler and workers both need to accept TCP connections on an open port.
By default, the scheduler binds to port 8786
and the worker binds to a
random open port. If you are behind a firewall then you may have to open
particular ports or tell Dask to listen on particular ports with the --port
and --worker-port
keywords.:
dask scheduler --port 8000
dask worker --dashboard-address 8000 --nanny-port 8001
Nanny Processes¶
Dask workers are run within a nanny process that monitors the worker process and restarts it if necessary.
Diagnostic Web Servers¶
Additionally, Dask schedulers and workers host interactive diagnostic web
servers using Bokeh. These are optional, but
generally useful to users. The diagnostic server on the scheduler is
particularly valuable, and is served on port 8787
by default (configurable
with the --dashboard-address
keyword).
For more information about relevant ports, please take a look at the available command line options.
Automated Tools¶
There are various mechanisms to deploy these executables on a cluster, ranging from manually SSH-ing into all of the machines to more automated systems like SGE/SLURM/Torque or Yarn/Mesos. Additionally, cluster SSH tools exist to send the same commands to many machines. We recommend searching online for “cluster ssh” or “cssh”.
CLI Options¶
Note
The command line documentation here may differ depending on your installed
version. We recommend referring to the output of dask scheduler --help
and dask worker --help
.
dask scheduler¶
Launch a Dask scheduler.
dask scheduler [OPTIONS] [PRELOAD_ARGV]...
Options
- --host <host>¶
URI, IP or hostname of this server
- --port <port>¶
Serving port
- --interface <interface>¶
Preferred network interface like ‘eth0’ or ‘ib0’
- --protocol <protocol>¶
Protocol like tcp, tls, or ucx
- --tls-ca-file <tls_ca_file>¶
CA cert(s) file for TLS (in PEM format)
- --tls-cert <tls_cert>¶
certificate file for TLS (in PEM format)
- --tls-key <tls_key>¶
private key file for TLS (in PEM format)
- --dashboard-address <dashboard_address>¶
Address on which to listen for diagnostics dashboard
- Default
':8787'
- --dashboard, --no-dashboard¶
Launch the Dashboard [default: –dashboard]
- --jupyter, --no-jupyter¶
Start a Jupyter Server in the same process. Warning: This will makeit possible for anyone with access to your dashboard address to runPython code
- --show, --no-show¶
Show web UI [default: –show]
- --dashboard-prefix <dashboard_prefix>¶
Prefix for the dashboard app
- --use-xheaders <use_xheaders>¶
User xheaders in dashboard app for ssl termination in header
- Default
False
- --pid-file <pid_file>¶
File to write the process PID
- --scheduler-file <scheduler_file>¶
File to write connection information. This may be a good way to share connection information if your cluster is on a shared network file system.
- --preload <preload>¶
Module that should be loaded by the scheduler process like “foo.bar” or “/path/to/foo.py”.
- --idle-timeout <idle_timeout>¶
Time of inactivity after which to kill the scheduler
- --version¶
Show the version and exit.
Arguments
- PRELOAD_ARGV¶
Optional argument(s)
dask worker¶
Launch a Dask worker attached to an existing scheduler
dask worker [OPTIONS] [SCHEDULER] [PRELOAD_ARGV]...
Options
- --tls-ca-file <tls_ca_file>¶
CA cert(s) file for TLS (in PEM format)
- --tls-cert <tls_cert>¶
certificate file for TLS (in PEM format)
- --tls-key <tls_key>¶
private key file for TLS (in PEM format)
- --worker-port <worker_port>¶
Serving computation port, defaults to random. When creating multiple workers with –nworkers, a sequential range of worker ports may be used by specifying the first and last available ports like <first-port>:<last-port>. For example, –worker-port=3000:3026 will use ports 3000, 3001, …, 3025, 3026.
- --nanny-port <nanny_port>¶
Serving nanny port, defaults to random. When creating multiple nannies with –nworkers, a sequential range of nanny ports may be used by specifying the first and last available ports like <first-port>:<last-port>. For example, –nanny-port=3000:3026 will use ports 3000, 3001, …, 3025, 3026.
- --dashboard-address <dashboard_address>¶
Address on which to listen for diagnostics dashboard
- --dashboard, --no-dashboard¶
Launch the Dashboard [default: –dashboard]
- --listen-address <listen_address>¶
The address to which the worker binds. Example: tcp://0.0.0.0:9000 or tcp://:9000 for IPv4+IPv6
- --contact-address <contact_address>¶
The address the worker advertises to the scheduler for communication with it and other workers. Example: tcp://127.0.0.1:9000
- --host <host>¶
Serving host. Should be an ip address that is visible to the scheduler and other workers. See –listen-address and –contact-address if you need different listen and contact addresses. See –interface.
- --interface <interface>¶
Network interface like ‘eth0’ or ‘ib0’
- --protocol <protocol>¶
Protocol like tcp, tls, or ucx
- --nthreads <nthreads>¶
Number of threads per process.
- --nworkers <n_workers>¶
Number of worker processes to launch. If negative, then (CPU_COUNT + 1 + nworkers) is used. Set to ‘auto’ to set nworkers and nthreads dynamically based on CPU_COUNT
- --name <name>¶
A unique name for this worker like ‘worker-1’. If used with –nworkers then the process number will be appended like name-0, name-1, name-2, …
- --memory-limit <memory_limit>¶
- Bytes of memory per process that the worker can use.This can be:- an integer (bytes), note 0 is a special case for no memory management.- a float (fraction of total system memory).- a string (like 5GB or 5000M).- ‘auto’ for automatically computing the memory limit.
- Default
'auto'
- --nanny, --no-nanny¶
Start workers in nanny process for management [default: –nanny]
- --pid-file <pid_file>¶
File to write the process PID
- --local-directory <local_directory>¶
Directory to place worker files
- --resources <resources>¶
Resources for task constraints like “GPU=2 MEM=10e9”. Resources are applied separately to each worker process (only relevant when starting multiple worker processes with ‘–nworkers’).
- --scheduler-file <scheduler_file>¶
Filename to JSON encoded scheduler information. Use with dask scheduler –scheduler-file
- --death-timeout <death_timeout>¶
Seconds to wait for a scheduler before closing
- --dashboard-prefix <dashboard_prefix>¶
Prefix for the dashboard
- --lifetime <lifetime>¶
If provided, shut down the worker after this duration.
- --lifetime-stagger <lifetime_stagger>¶
Random amount by which to stagger lifetime values
- --worker-class <worker_class>¶
Worker class used to instantiate workers from.
- Default
'dask.distributed.Worker'
- --lifetime-restart, --no-lifetime-restart¶
Whether or not to restart the worker after the lifetime lapses. This assumes that you are using the –lifetime and –nanny keywords
- --preload <preload>¶
Module that should be loaded by each worker process like “foo.bar” or “/path/to/foo.py”
- --preload-nanny <preload_nanny>¶
Module that should be loaded by each nanny like “foo.bar” or “/path/to/foo.py”
- --scheduler-sni <scheduler_sni>¶
Scheduler SNI (if different from scheduler hostname)
- --version¶
Show the version and exit.
Arguments
- SCHEDULER¶
Optional argument
- PRELOAD_ARGV¶
Optional argument(s)